
s.
er

ht
e

r is
us
and
er
 of
rth
The
re

m
[1]
T

 of
 of

on
ies

rget
re

r
a
hly

that
ll
ies
it

ge
 by
es
hat
ior

The YAGS Branch Prediction Scheme

A. N. Eden and T. Mudge, {ane, tnm}@eecs.umich.edu
Dept. EECS, University of Michigan, Ann Arbor
Abstract

The importance of an accurate branch prediction
mechanism has been well documented. Since the
introduction of gshare [1] and the observation that
aliasing in the PHT is a major factor in reducing
prediction accuracy [2,3,4,5], several schemes have been
proposed to reduce aliasing in the PHT [6, 7, 8, 9]. All
these schemes are aimed at maximizing the prediction
accuracy with the fewest resources. In this paper we
introduce Yet Another Global Scheme (YAGS) — a new
scheme to reduce the aliasing in the PHT — that combines
the strong points of several previous schemes. YAGS
introduces tags into the PHT that allows it to be reduced
without sacrificing key branch outcome information. The
size reduction more than offsets the cost of the tags. Our
experimental results show that YAGS gives better
prediction accuracy for the SPEC95 benchmark suite than
several leading prediction schemes, for the same cost. It
also performs better than the other schemes in the presence
of a context switch. Finally, YAGS displays good results for
the go benchmark, which is of special interest since it has a
large number of static branches and reflects situations
where aliasing in the PHT can be a problem.

1. Introduction

To realize the performance potential of today’s widely-
issued, deeply pipelined superscalar processors, a good
branch prediction mechanism is essential. The introduction
of two level adaptive schemes was an important step in this
direction [10]. They are able to achieve predicted levels of
90% or more. Of the two level schemes, global history
schemes appear to work best for integer code [11]. This, in
part, is due to the large number of if-else instructions in
integer programs. Sequences of if-else are often highly
correlated.

The main problem which reduces the prediction rate in the
global schemes is aliasing between two indices (an index is
typically formed from history and address bits) that map to
the same entry in the Pattern History Table (PHT). Since
the information stored in the PHT entries is either “taken”
or “not taken,” two aliased whose corresponding

information is the same will not result in misprediction
We define this situation as neutral aliasing. On the oth
hand, two aliased indices with different information mig
interfere with each other and result in a misprediction. W
define this situation as destructive aliasing. This pape
organized as follows: the next section looks at previo
schemes to reduce aliasing and highlights their strong
weak points. In the third section we introduce Yet Anoth
Global Scheme (YAGS), which combines the strengths
the previous schemes to eliminate aliasing. The fou
section presents the results of our performance studies.
fifth section offers concluding remarks and proposes futu
directions for this research.

2. Previous Work

Gshare . The first scheme to address the aliasing proble
in two level adaptive branch predictors was gshare
(figure 1). The observation that the usage of the PH
entries is not uniform when indexed by concatenations
the global history and the branch address, led to idea
using the “exclusive or” function instead of concatenati
to more evenly use the entries in the PHT. Detailed stud
have shown it yields little, if any, advantage [4].

The Agree Predictor. The agree predictor (figure 2)
assigns a biasing bit to each branch in the Branch Ta
Buffer (BTB) according to the branch direction just befo
it is written into the BTB [7]. The PHT information is then
changed from “taken” or “not taken” to “agree” o
“disagree” with the prediction of the biasing bit. The ide
behind the agree predictor is that most branches are hig
biased to be either taken or not taken and the hope is
the first time a branch is introduced into the BTB it wi
exhibit its biased behavior. If this is the case, most entr
in the PHT will be “agreeing,” so if aliasing does occur
will more likely be neutral aliasing, which will not result in
a misprediction.

It is one of the first two level scheme to take advanta
branches’ biased behavior to reduce destructive aliasing
replacing it with neutral aliasing. It considerably reduc
destructive aliasing. However, there is no guarantee t
the first time a branch is introduced to the BTB its behav

trev
Typewritten Text
 31st Annual IEEE/ACM Symposium on Microarchitecture. December, 1998. pp. 69-77

Figure 1. Gshare

Figure 4.
Skew

Figure 2.
Agree

Figure 3.
Bi-Mode

Figure 6.
YAGSFigure 5. Filter

his
wed
ing

en
er in
, f2
ity
all
nly
ted

n.
 in
so

nk
ct
ds
er
 is

ng
the
ng
ose

ed
ree
ze
lict
r,

int
hes
he
ias
ry.
set
he
is
the
 is
ted
ter
 the
 bit
r is
me
will correspond to its bias. When such cases occur, the
biasing bit will stay the same until the branch is replaced in
the BTB by a different branch. Meanwhile, it will pollute
the PHT with “disagree” information. There is still aliasing
between instances of a branch which do not comply with
the bias and instances which do comply with the bias.
Furthermore, when a branch is not in the BTB, no
prediction is available.

The Bi-Mode Predictor. The bi-mode predictor (figure
3) tries to replace destructive aliasing with neutral aliasing
in a different manner [8]. It splits the PHT table into even
parts. One of the parts is the choice PHT, which is just a
bimodal predictor (an array of two bit saturating counters)
with a slight change in the updating procedure. The other
two parts are direction PHTs; one is a “taken” direction
PHT and the other is a “not taken” direction PHT. The
direction PHTs are indexed by the branch address xored
with the global history. When a branch is present, its
address points to the choice PHT entry which in turn
chooses between the “taken” direction PHT and the “not
taken” direction PHT. The prediction of the direction PHT
chosen by the choice PHT serves as the prediction. Only
the direction PHT chosen by the choice PHT is updated.
The choice PHT is normally updated too, but not if it gives
a prediction contradicting the branch outcome and the
direction PHT chosen gives the correct prediction.

As a result of this scheme, branches which are biased to be
taken will have their predictions in the “taken” direction
PHT, and branches which are biased not to be taken will
have their predictions in the “not taken” direction PHT. So
at any given time most of the information stored in the
“taken” direction PHT entries is “taken” and any aliasing is
more likely not to be destructive. The same phenomenon
happens in the “not taken” direction PHT. The choice PHT
serves to dynamically choose the branches’ biases.

In contrast to the agree predictor, if the bias is incorrectly
chosen the first time the branch is introduced to the BTB, it
is not bound to stay that way while the branch is in the
BTB and as a result pollute the direction PHTs.

However, the choice PHT takes a third of all PHT
resources just to dynamically determine the bias. It also
does not solve the aliasing problem between instances of a
branch which do not agree with the bias and instances
which do.

The Skewed Branch Predictor. The skewed branch
predictor (figure 4) is based on the observation that most
aliasing occurs not because the size of the PHT is too
small, but because of a lack of associativity in the PHT (the
major contributor to aliasing is conflict aliasing and not
capacity aliasing). The best way to deal with conflict

aliasing is to make the PHT set-associative, but t
requires tags and is not cost-effective. Instead, the ske
predictor emulates associativity using a special skew
function [6].

The skewed branch predictor splits the PHT into three ev
banks and hashes each index to a 2-bit saturating count
each bank using a unique hashing function per bank (f1
and f3). The prediction is made according to a major
vote among the three banks. If the prediction is wrong
three banks are updated. If the prediction is correct, o
the banks that made a correct prediction will be upda
(partial updating).

The skewing function should have inter-bank dispersio
This is needed to make sure that if a branch is aliased
one bank it will not be aliased in the other two banks,
the majority vote will produce an unaliased prediction.

The reasoning behind partial updating is that if a ba
gives a misprediction while the other two give corre
predictions, the bank with the misprediction probably hol
information which belongs to a different branch. In ord
to maintain the accuracy of the other branch, this bank
not updated.

The skewed branch predictor tries to eliminate all aliasi
instances and therefore all destructive aliasing. Unlike
other methods, it tries to eliminate destructive aliasi
between branch instances which obey the bias and th
which do not. However, to achieve this, the skew
predictor stores each branch outcome in two or th
banks. This redundancy of 1/3 to 2/3 of the PHT si
creates capacity aliasing but eliminates much more conf
aliasing, resulting in a lower misprediction rate. Howeve
it is slow to warm-up on context switches.

The Filter Mechanism. Reducing the amount of
redundant information stored in the PHT is the main po
of this scheme [9]. The idea is that highly biased branc
can be predicted with high accuracy with just one bit. T
filtering of such branches out of the PHT is done by a b
bit and a saturating counter (figure 5) for each BTB ent
When a branch is introduced to the BTB the bias bit is
to the direction of the branch when it is resolved and t
counter is initialized. When every branch instance
resolved, if the direction of the branch is the same as
bias bit the counter is incremented. If not, the counter
zeroed and the bias bit is toggled. A branch is predic
using the PHT if the counter is not saturated. If the coun
is saturated, it means that the branch is highly biased in
direction indicated by the bias bit, and therefore the bias
is used as a prediction. In this case, when the counte
saturated, the PHT is not updated with the branch outco

ase
ere
ed
 it
 if
e

 is
The
s

ng
e

f a
ter
ral
in
e

e is
cy.
 bit
h
ent
e
d
e
e
be

ere
he
tem
on.
ch
all
ntil
as

al,
the
he
he
et-
— the saturated counter filters this information from the
PHT.

The size of the counter has to be tuned to the size of the
PHT. If the PHT size is large, the amount of filtering
needed is small, and therefore the size of the counters
should be large.

When a branch is first introduced in the BTB, the counter
is initialized. It was found that it is best to initialize the
counter to its maximum value so the filtering mechanism
will start working immediately. If the branch is not highly
biased, the bias bit will flip fairly quickly and the counter
will be zeroed. On the other hand, if the counter is
initialized to zero and the branch is highly biased, it will
take time for the filtering mechanism to start working and
the PHT will be polluted in the meantime.

The filter mechanism tries to eliminate all aliasing
instances, neutral and destructive, by considerably
reducing the amount of information stored in the PHT.
However, it mispredicts instances of highly biased
branches which do not comply with the bias.

3. YAGS

The brief overview above, of earlier proposals to reduce
aliasing in global schemes, suggests that splitting the PHT
into two branch streams corresponding to biases of “taken”
and “not taken,” as is done in the agree and bi-mode
predictors, is a good idea. However, as in the skewed
branch predictor, we do not want to neglect aliasing
between biased branches and their instances which do not
comply with the bias. Finally, it will be beneficial if we can
reduce the amount of unnecessary information in the PHT,
as in the filter mechanism, but not at the expense of
mispredicting some of the branch instances.

The motivation behind YAGS is the observation that for
each branch we need to store its bias and the instances
when it does not agree with it (figure 6). If we employ a
bimodal predictor to store the bias, as the choice predictor
does in the bi-mode scheme, than all we need to store in
the direction PHTs are the instances when the branch does
not comply with its bias. This reduces the amount of
information stored in the direction PHTs, and therefore the
direction PHTs can be smaller than the choice PHT. To
identify those instances in the direction PHTs we add small
tags (6-8 bits) to each entry, referring to them now as
direction caches. These tags store the least significant bits
of the branch address and they virtually eliminate aliasing
between two consecutive branches.

When a branch occurs in the instruction stream, the choice
PHT is accessed. If the choice PHT indicated “taken,” the

“not taken” cache is accessed to check if it is a special c
where the prediction does not agree with the bias. If th
is a miss in the “not taken” cache, the choice PHT is us
as a prediction. If there is a hit in the “not taken” cache
supplies the prediction. A similar set of actions is taken
the choice PHT indicates “not taken,” but this time th
check is done in the “taken” cache. The choice PHT
addressed and updated as in the bi-mode choice PHT.
“not taken” cache is updated if a prediction from it wa
used. It is also updated if the choice PHT is indicati
“taken” and the branch outcome was “not taken.” Th
same happens with the “taken” cache.

We still need to take care of aliasing for instances o
branch which do not agree with the branch’s bias. Af
making the introduction of tags cost-effective, the natu
solution for the aliasing problem is to add associativity (
[6] it was showed that the vast majority of aliasing in th
PHT is conflict aliasing).

When making the direction caches set-associative, ther
some extra cost for keeping a correct replacement poli
For example, in a two-way set-associative cache, one
for every two entries will suffice to keep track of whic
entry was replaced last. We use an LRU replacem
policy with one exception: an entry in the “taken” cach
which indicates “not taken” will be replaced first to avoi
redundant information. If an entry in the “taken” cach
indicates “not taken,” this information is already in th
choice PHT and therefore is redundant and can
replaced.

4. Performance Studies

4.1 Methodology

The experimental data presented in this paper w
collected using SPEC95 benchmark traces. T
benchmarks were compiled on the SunOS operating sys
using the gcc compiler. The traces were run to completi
In order to simulate a context switch for the context swit
study only, a new trace file was created by interleaving
eight SPEC95 benchmarks every 60,000 instructions u
one of the files runs out of instructions The number w
chosen not to reflect a real context switching interv
which would be much less frequent, but to emphasize
effect of context switching on the various predictors. T
size of the YAGS predictors includes the tags of t
direction caches. In the case where YAGS is s
associative the LRU and history bits are also added.

ize
en
two
ter
less
ed.
he
unt
4.2 Results

Figure 7 shows the misprediction rate for gshare, the

skewed predictor, the bi-mode predictor and YAGS with
direct mapped direction caches. As can be seen, YAGS
performs better than the other schemes, particularly for
small sizes. However, as the size of the PHT increases,
YAGS’s advantage over the other schemes decreases. This
is to be expected, because, the aliasing problem in the PHT
decreases with size and therefore the performance of all the
schemes converges.

One of the pitfalls of the SPEC95 benchmark suite is that
most traces have a small static branch signature [8]. For
example, the compress benchmark has only 482 static
branches. These branches are executed over and over again
throughout the course of the program. However, the small
static branch signature implies each branch is more likely
to have a unique entry in the PHT for each history instance,
resulting in a very small amount of aliasing in the PHT.
This yields optimistic figures for many branch predictions
schemes.

The gcc and go benchmarks are thus of special interest
because of their large static and dynamic branch signatures.
As can be seen in figures 8 and 9, YAGS also outperforms
the other schemes for the go and gcc benchmarks. The go
benchmark is particularly interesting because it suffers the
most from destructive aliasing. The gshare scheme for
small predictors achieves a 69% correct prediction rate for
go. For about the same amount of resources (0.5KB)
YAGS achieves a 77% correct prediction rate. The bi-
mode, which is designed to reduce destructive aliasing,
achieves only 73% correct prediction rate.

4.3 Set Associativity in the Direction Caches

When increasing the size of the PHT, we increase the s
of the history register to better exploit correlation betwe
branches. However, if the direction caches are made
way set-associative, not all the bits in the history regis
are used to index into the direction caches. In fact, one
bit is used than if the direction caches were direct-mapp
This loss of correlation has a negative effect on t
prediction rate. In the present YAGS scheme, the amo

0.86

0.88

0.90

0.92

0.94

0.96

0.1 1 10 100

predictor size in K-bytes

prediction
rate

yags6

bimode

skew

gshare

Figure 7. Prediction rates for four schemes
includin g YAGS6 (6 bits in the ta gs).

Figure 8. Predicting GO.

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0.1 1 10 100

predictor size in K-bytes

prediction
rate

yags6

bimode

gshare

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.1 1 10 100

predictor size in K-bytes

pr
ed

ic
tio

n
ra

te

yags6

bimode

gshare

Figure 9. Predicting GCC.

ort
 is
al
nch
he
s to
 for
y

 in
me

nd
he
-
ts

the
r
’s

ch
s

 in
w
h.
ich

rid
the
xt
e

ee

d in
and
and
es.
nt

 of
ith

to
the
he
big
est

ers.
ed
of remaining aliasing is so little that the advantage gained
by making the direction PHT set-associative is offset by
the loss of correlation. In order to maintain the same level
of correlation, one bit of history is used as a tag in addition
to the usual tag.

Figure 10 shows the prediction rate of a 6 bit tag YAGS vs.

the same predictor with a 2 way set associative cache. The
extra bits that are used by the two way set-associative are
the LRU bits and the extra tag bit which is taken from the
history register. As expected, the two way set-associative
version is able to reduce the aliasing in the direction
caches. The small difference between the schemes is due
to lack of aliasing in the direction caches.

4.4 Context Switching

Future high-performance microprocessors will use larger
branch prediction schemes — a trend that is very likely to
continue in the near future. Ideally, the prediction rate
should improve in proportion to the amount of hardware
put into the scheme. However, a pitfall of large predictors
is the time it takes them to reach peak performance from a
cold start. In the presence of intensive context switching
the warm-up time of the branch prediction scheme can
have a significant influence on the misprediction rate.
Furthermore, some complex schemes might end up
achieving less accurate predictions than a less sophisticated
scheme, due to long warm-up times. It was shown that a
hybrid predictor (first proposed in [1]) composed of gshare
and the bimodal predictor has good performance in the

presence of a context switch [9]. This is due to a sh
warm up time of the bimodal component. Each branch
mapped to only one entry in the PHT of the bimod
scheme. Therefore, it takes only few executions of a bra
for its respective entry to reflect the information stored t
branch. On the other hand, the gshare scheme ha
execute a branch several times for each history instance
it to warm up. The potentially large number of histor

instances (i.e., 2history length) will result in a very long
warm-up time and that in turn will cause a degradation
performance in the presence of context switches. The sa
phenomenon is observed in the skewed predictor.

However, one would expect the bi-mode predictor a
YAGS to be more tolerant of context switches. Most of t
information in the “not taken” direction PHT of the bi
mode predictor is “not taken.” Once the choice PHT poin
to the “not taken” direction PHT the probability of a
“taken” prediction is very small. Thus only a few
executions of each branch are needed to warm up
choice PHT (it is essentially the bimodal predictor). Afte
that, it will take more executions to warm up the branch
history instances which do not comply with the bran
bias. But for the most part, the predictor will perform a
well as the bimodal. The same phenomenon occurs
YAGS. This time it is due to the tags. There is a lo
probability that the tags will match after a context switc
Therefore, until some tags match, the choice PHT (wh
is, in fact, the bimodal) will serve as the predictor.

In a sense, YAGS and the bi-mode predictors are hyb
predictors which combine the gshare scheme with
simple bimodal predictor. In the presence of a conte
switch, they should exhibit the short warm up time of th
bimodal predictor. (Similar behavior is seen in the agr
predictor.)

Figure 11 shows the performance of the schemes teste
the presence of context switches. As expected, YAGS
the bi-mode predictor perform much better than gshare
the skew predictor because of their short warm-up tim
The differences between the performance of the differe
methods is much more pronounced in the presence
context switches. The gshare scheme would converge w
the others only if the PHT were large enough
accommodate most of the branch instances from all
SPEC95 benchmarks. Without context switches, t
schemes would converge if the gshare PHT were
enough to accommodate the benchmark with the larg
branch signature.

The gshare scheme does not perform as well as the oth
This is because of its long warm-up time, as discuss
above.

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.1 1 10 100

predictor size in K-bytes

prediction
rate

yags6-2way

yags6

Figure 10. 6 bit ta gs vs. 2-wa y set associative.

he
go
 is
 of
te,

red
r of

tion
 to
The difference between the performance of YAGS and that
of the bi-mode scheme is very small. Only for very small
predictor size is the difference significant. It might be that
YAGS would do better in the presence of a context switch
if a larger tag size were used.

4.5 Design Space

The YAGS version shown so far has a 6 bit tag and the
direction caches are each half the size of the choice PHT.
This is somewhat arbitrary. How big do the tags need to be
to identify the branch in most cases? Figure 12 shows the
prediction rate as a function of the tag size for SPEC95.
The size of the choice PHT is 0.25KB (1024 entries), each
direction cache has 512 entries and its size varies according
to the size of the tag. According to figure 12, there is no
reason to increase the size of the tag beyond 8 bits —
prediction improvement is almost zero. There may be no
reason to increase the size of the tag from 6 to 8 bits since
the prediction improvement is very small and may not
justify the increase in the predictor size. Figure 13 shows
the prediction rate as a function of tag size for the go
benchmark only. The difference between the prediction
rate for a 6 bit tag and 8 bit tag is more noticeable for the
go benchmark than for SPEC95 in general. As mentioned
before, the go benchmark has a large branch signature and
can benefit from an increase in tag size.

Figures 14 and 15 shown the prediction rate vs. predictor
size for the SPEC95 and go benchmark respectively. On
average for SPEC95, increasing the tag from 6 bits to 8 bits

does not result in better predictions (figure 14). On t
other hand, it does improve the prediction rate for the
benchmark (figure 15). The prediction rate improvement
minimal and almost negligible. Even increasing the size
the tag to 32 bits does not result in a better prediction ra
but it increases the size of the predictor considerably.

By reducing the amount of unnecessary information sto
in the direction caches, we are able to reduce the numbe
entries in the direction caches and to make the introduc
of tags cost-effective. Figure 16 gives some insight as

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.1 1 10 100

predictor size in K-bytes

prediction
rate

yags6

bimode

skew

gshare

Figure 11. Predictin g in the presence
of context switches.

0.937

0.938

0.939

0.940

0.941

0.942

0.943

0.944

0 5 10 15
tag size in bits

prediction
rate

Figure 12. Tag sizes for SPEC95.

0.9082

0.9084

0.9086

0.9088

0.9090

0.9092

0.9094

0.9096

0.9098

0 5 10 15

tag size in bits

prediction
rate

Figure 13. Tag sizes for GO.

es
 and
anch
s).
ed

n
by
GS
ases
e

ce.
ce

ill
ion
ger
es

e
nts
as

he
B

ced
ich
B
is
 a

gh
ion
how small the direction caches can be with respect to the
choice PHT. Figure 16 shows the prediction rate vs.
predictor size for three versions of YAGS. The direction
caches in the first version are each half the size of the
choice PHT. In the second version, they are one quarter the
size of the choice PHT, and in the third are one eighth of
the size. All versions use a six bit tag

Figure 16 shows that for small predictor sizes the 0.125
version is best, while for large predictor sizes, the 0.5
version is best. For small predictor sizes, most of the
resources should be allocated to the choice PHT, ensuring
that the predictor will predict at least as well as a simple

bimodal predictor. When the amount of resourc
increases, there is much less aliasing in the choice PHT
resources can be freed to handle the cases where a br
does not agree with its bias (i.e. larger direction cache
Thus the size of the direction caches should be tun
according to the overall size of the predictor.

5. Summary

We introduced YAGS, a two level global branch predictio
scheme which tries to eliminate aliasing in the PHT
combining the advantages of previous schemes. YA
performs as well as all other schemes tested. In many c
it was considerably better. YAGS and the bi-mod
predictors perform well in context switches.

Some work was done to investigate the design spa
Increasing the size of the tags only improves performan
up to a point. After that, increasing the tag size w
degrade performance, and the marginally better predict
rate does not justify the resources taken up by the lar
tag. We have found that the size of the direction cach
should be tuned to the size of the predictor.

We believe the potential of YAGS is greater than what w
were able to demonstrate in this paper. In all experime
conducted for this paper, the size of the history register w
dictated by the amount of resources allocated for t
predictor. For example, in a 1KB gshare, there are 4K
entries and therefore the size the history register was for
to be 12 bits. The closest bi-mode predictor in size wh
was tested is a 0.75KB predictor, from which only 0.25K
(1K entries) were dedicated to each direction PHT. Th
forced this instance of the bi-mode predictor to use only
10 bit history register. As a result, the bi-mode althou
reducing the aliasing in the PHT, has reduced correlat

0.89

0.90
0.91

0.92

0.93

0.94
0.95

0.96

0.1 1 10 100

predictor size in K-bytes

prediction
rate

yags8

yags6

Figure 14. Predictor size for SPEC95.

0.70

0.75

0.80

0.85

0.90

0.1 1 10 100

predictor size in K-bytes

prediction
rate

yags8

yags6

Figure 15. Predictor size for GO.

0.89
0.90
0.91
0.92
0.93
0.94
0.95
0.96

0.1 1 10 100

predictor size in K-bytes

prediction
rate

0.5

0.25

0.125

Figure 16. Direction cache size.

nd

f
ds.

d

ee
h

h

h
le

h

information for use in the prediction, compared to a similar
sized gshare. This phenomena holds true for the YAGS
predictor as well, since the size of the direction caches is
reduced even further than in the bi-mode predictor and as a
result the size the history register (and therefore the
correlation information) was reduced. An example is the
1.25KB YAGS where 0.25KB are dedicated to the choice
PHT. Each direction cache takes 0.5KB and has 64 entries,
i.e., the history register is only 6 bits.

In figure 16, whenever the size of the direction caches was
decreased by half, the size of the history register was
decreased by one bit and therefore correlation information
was lost. A better experiment would decrease the relative
size of the direction caches while adding history bits as
tags. Making the direction caches 2 way set associative
hardly improved the prediction. This led us to believe that
the aliasing problem in the direction PHT was almost
completely solved. Therefore, decreasing the size of the
direction caches degraded the performance because of the
reduction in correlation information, and not necessarily
because of increased aliasing.

We hypothesize that an improved YAGS would have much
smaller direction caches with more history bits in the tags
to preserve or increase the correlation information for use
in prediction. Of course history bits can be tagged in every
predictor scheme but the overhead in YAGS would be
significantly smaller than all the other schemes.

Finally, the basic idea behind YAGS could be combined
with other of the schemes, particularly the filter
mechanism. An enhancement that might be tried is add a
small cache to capture the instances filtered out of the PHT
which do not agree with the bias bit.

Acknowledgments. This work was supported in part by
DAPRA contract DABT63-97-C-0047. The authors would
also like to thank Elly Z. Winner and C.-C. Lee for their
help.

References

[1] S. McFarling. Combining Branch Predictors.
Technical Report TN-36, Digital Western Research
Laboratory, June 1993.

[2] A. Talcott, M. Nemirovsky, and R. Wodd. The Influence of
Branch Prediction Table Interference on Branch Prediction
Scheme Performance. Proc. 3rd Ann. Int. Conf. on Parallel
Architectures and Compilation Techniques, 1995.

[3] C. Young, N. Gloy, and M. Smith. A comparative Analysis
of Schemes for Correlated Branch Prediction. Proc. 22nd
Ann. Int. Symp. on Computer Architecture, June 1995

[4] S. Sechrest, C.-C. Lee, and T. Mudge. Correlation a
Aliasing in Dynamic Branch Predictors. Proc. 23rd Ann. Int.
Symp. on Computer Architecture, May 1996.

[5] C. Young, N. Gloy, B. Chen, and M. Smith. An Analysis o
Dynamic Branch Prediction Schemes on System Workloa
Proc. 23rd Ann. Int. Symp. on Computer Architecture, May
1996.

[6] P. Michaud, A. Seznec, and R. Uhlig. Trading Conflict an
Capacity Aliasing in Conditional Branch Predictors. Proc.
24th Ann. Int. Symp. on Computer Architecture, May 1997.

[7] E. Sprangle, R. Chappell, M. Alsup, and Y. Patt, The Agr
Predictor: A Mechanism for Reducing Negative Branc
History Interference. Proc. 24th Ann. Int. Symp. on
Computer Architecture, May 1997.

[8] C.-C. Lee, I.-C. Chen, and T. Mudge. The Bi-Mode Branc
Predictor. Proc. MICRO 30, Dec. 1997.

[9] P.-Y. Chang, M. Evers, and Y. Patt. Improving Branc
Prediction Accuracy by Reducing Pattern History Tab
Interference. Proc. Int. Conf. on Parallel Architectures and
Compilation Techniques, Oct. 1996.

[10] T.-Y. Yeh and Y. Patt. Two-level Adaptive Branch
Prediction. Proc 24th ACM/IEEE Int. Symp. on
Microarchitecture, Nov. 1991.

[11] T.-Y. Yeh and Y. Patt. A Comparison of Dynamic Branc
Predictors that us Two Level of Branch History. Proc. 20th
Ann. Int. Symp. on Computer Architecture, May 1993.

	1. Introduction
	2. Previous Work
	3. YAGS
	4. Performance Studies
	4.1 Methodology
	4.2 Results
	4.3 Set Associativity in the Direction Caches
	4.4 Context Switching
	4.5 Design Space

	5. Summary
	[1] S. McFarling. Combining Branch Predictors. Technical Report TN-36, Digital Western Research L...
	[2] A. Talcott, M. Nemirovsky, and R. Wodd. The Influence of Branch Prediction Table Interference...
	[3] C. Young, N. Gloy, and M. Smith. A comparative Analysis of Schemes for Correlated Branch Pred...
	[4] S. Sechrest, C.-C. Lee, and T. Mudge. Correlation and Aliasing in Dynamic Branch Predictors. ...
	[5] C. Young, N. Gloy, B. Chen, and M. Smith. An Analysis of Dynamic Branch Prediction Schemes on...
	[6] P. Michaud, A. Seznec, and R. Uhlig. Trading Conflict and Capacity Aliasing in Conditional Br...
	[7] E. Sprangle, R. Chappell, M. Alsup, and Y. Patt, The Agree Predictor: A Mechanism for Reducin...
	[8] C.-C. Lee, I.-C. Chen, and T. Mudge. The Bi-Mode Branch Predictor. Proc. MICRO 30, Dec. 1997.
	[9] P.-Y. Chang, M. Evers, and Y. Patt. Improving Branch Prediction Accuracy by Reducing Pattern ...
	[10] T.-Y. Yeh and Y. Patt. Two-level Adaptive Branch Prediction. Proc 24th ACM/IEEE Int. Symp. o...
	[11] T.-Y. Yeh and Y. Patt. A Comparison of Dynamic Branch Predictors that us Two Level of Branch...

	The YAGS Branch Prediction Scheme
	A. N. Eden and T. Mudge, {ane, tnm}@eecs.umich.edu
	Dept. EECS, University of Michigan, Ann Arbor

