31st Annual IEEE/ACM Symposium on Microarchitecture. December, 1998. pp. 69-77

The YAGS Branch Prediction Scheme

A. N. Eden and T. Mudge, {ane, tnm}@eecs.umich.edu
Dept. EECS, University of Michigan, Ann Arbor

Abstract information is the same will not result in mispredictions.

] . . We define this situation as neutral aliasing. On the other
The importance of an accurate branch predictionyang o aliased indices with different information might
mechanism has been well documented. Since t&ierfere with each other and result in a misprediction. We
introduction of gshare [1] and the observation that yefine this situation as destructive aliasing. This paper is
aliasing in the PHT is a major factor in reducing oroanized as follows: the next section looks at previous
prediction accuracy [2,3,4,5], several schemes have beeg.nemes to reduce aliasing and highlights their strong and
proposed to reduce aliasing in the PHT [6, 7, 8, 9]. All yeak points. In the third section we introduce Yet Another
these schemes are aimed at maximizing the predictiog|ohal Scheme (YAGS), which combines the strengths of
accuracy with the fewest resources. In this paper Wene previous schemes to eliminate aliasing. The fourth
introduce Yet Another Global Scheme (YAGS) &-new getion presents the results of our performance studies. The

scheme to reduce the aliasing in the PHTthat combines i section offers concluding remarks and proposes future
the strong points of several previous schemes. YAGg ections for this research.

introduces tags into the PHT that allows it to be reduced
without sacrificing key branch outcome information. The .
size reduction more than offsets the cost of the tags. OL%" Previous Work

experimental results show that YAGS gives bettesshare. The first scheme to address the aliasing problem
prediction accuracy for the SPEC95 benchmark suite thag, wwo level adaptive branch predictors was gshare [1]

several leading prediction schemes, for the same cost. (figure 1). The observation that the usage of the PHT
also performs better than the other schemes in the presenggtries is not uniform when indexed by concatenations of
of a context switch. Finally, YAGS displays good results fofhe global history and the branch address, led to idea of
the go benchmark, which is of special interest since it has gsing the “exclusive or” function instead of concatenation

large number of static branches and reflects situationgo more evenly use the entries in the PHT. Detailed studies
where aliasing in the PHT can be a problem. have shown it yields little, if any, advantage [4].

The Agree Predictor. The agree predictor (figure 2)
assigns a biasing bit to each branch in the Branch Target
To realize the performance potential of today’s widely-Buffer (BTB) according to the branch direction just before
issued, deeply pipelined superscalar processors, a gotids written into the BTB [7]. The PHT information is then
branch prediction mechanism is essential. The introductiogphanged from “taken” or “not taken” to “agree” or

of two level adaptive schemes was an important step in thiglisagree” with the prediction of the biasing bit. The idea
direction [10]. They are able to achieve predicted levels opehind the agree predictor is that most branches are highly
90% or more. Of the two level schemes, global historyiased to be either taken or not taken and the hope is that
schemes appear to work best for integer code [11]. This, iifie first time a branch is introduced into the BTB it will
part, is due to the large number of if-else instructions irexhibit its biased behavior. If this is the case, most entries
integer programs. Sequences of if-else are often highlin the PHT will be “agreeing,” so if aliasing does occur it
correlated. will more likely be neutral aliasing, which will not result in

g misprediction.

1. Introduction

The main problem which reduces the prediction rate in th
global schemes is aliasing between two indices (an index I is one of the first two level scheme to take advantage
typically formed from history and address bits) that map tdranches’ biased behavior to reduce destructive aliasing by
the same entry in the Pattern History Table (PHT). Sincéeplacing it with neutral aliasing. It considerably reduces
the information stored in the PHT entries is either “taken’'destructive aliasing. However, there is no guarantee that
or “not taken,” two aliased whose correspondingthe first time a branch is introduced to the BTB its behavior

trev
Typewritten Text
 31st Annual IEEE/ACM Symposium on Microarchitecture. December, 1998. pp. 69-77

ETE

[address |[histar | [address || histary |
PHT PHT
Figure 2.
Agree
1 N —
pradicion agree/
bias bit dizagres

Figure 1. Gshare

predichon

Figure 3. Figure 4. [address][history |
[address | | history | Bi-Mode Skew]

chaice PHT £
L barkl banki bank?
dirvection PHT NT direcion PHT T -

I -

predichion
predicion
ETE [address
| address || histon | +)
PHT choice PHT
T cache NT carhe
Lo tag b b tag

PHT prediction

N I_ﬁﬁ@—

pradicion
cache hit

Figure 6.
Figure 5. Filter YAGS

predicion

will correspond to its bias. When such cases occur, thaliasing is to make the PHT set-associative, but this
biasing bit will stay the same until the branch is replaced imequires tags and is not cost-effective. Instead, the skewed
the BTB by a different branch. Meanwhile, it will pollute predictor emulates associativity using a special skewing
the PHT with “disagree” information. There is still aliasing function [6].

betwe_en |nstar_1ces of a brar_1ch which do not_comply V.Vltq'he skewed branch predictor splits the PHT into three even
the bias and instances which do comply with the b|as[.J . . . :
.) anks and hashes each index to a 2-bit saturating counter in
Furthermore, when a branch is not in the BTB, no .) X .
rediction is available each bank using a unique hashing functl(_)n per bank _(fl_, f2
P ' and f3). The prediction is made according to a majority
The Bi-Mode Predictor. The bi-mode predictor (figure vote among the three banks. If the prediction is wrong all
3) tries to replace destructive aliasing with neutral aliasinghree banks are updated. If the prediction is correct, only
in a different manner [8]. It splits the PHT table into eventhe banks that made a correct prediction will be updated
parts. One of the parts is the choice PHT, which is just §oartial updating).

bimodal predictor (an array of two bit saturating counters . . N . .
with a slight change in the updating procedure. The oth)rhe skewing function should have inter-bank dispersion.

Lo] . p w . . This is needed to make sure that if a branch is aliased in
two parts are direction PHTS; one is a "taken d|rect|on0ne bank it will not be aliased in the other two banks, so
PHT and the other is a “not taken” direction PHT. The '

direction PHTs are indexed by the branch address xoretge majority vote will produce an unaliased prediction.

with the global history. When a branch is present, itSThe reasoning behind partial updating is that if a bank
address points to the choice PHT entry which in turrgives a misprediction while the other two give correct
chooses between the “taken” direction PHT and the “nopredictions, the bank with the misprediction probably holds
taken” direction PHT. The prediction of the direction PHT information which belongs to a different branch. In order
chosen by the choice PHT serves as the prediction. Ontp maintain the accuracy of the other branch, this bank is
the direction PHT chosen by the choice PHT is updatechot updated.

The choice PHT is normally updated too, but not if it give . . I .
o L he skewed branch predictor tries to eliminate all aliasing
a prediction contradicting the branch outcome and the . L .
L . - instances and therefore all destructive aliasing. Unlike the
direction PHT chosen gives the correct prediction.

other methods, it tries to eliminate destructive aliasing
As a result of this scheme, branches which are biased to between branch instances which obey the bias and those
taken will have their predictions in the “taken” direction which do not. However, to achieve this, the skewed
PHT, and branches which are biased not to be taken wifiredictor stores each branch outcome in two or three
have their predictions in the “not taken” direction PHT. Sobanks. This redundancy of 1/3 to 2/3 of the PHT size
at any given time most of the information stored in thecreates capacity aliasing but eliminates much more conflict
“taken” direction PHT entries is “taken” and any aliasing isaliasing, resulting in a lower misprediction rate. However,
more likely not to be destructive. The same phenomenoitis slow to warm-up on context switches.

happens in the “not taken” direction PHT. The choice PHT

serves to dynamically choose the branches’ biases The Filter Mechanism. Reducing the amount of
y y ' redundant information stored in the PHT is the main point

In contrast to the agree predictor, if the bias is incorrectlpf this scheme [9]. The idea is that highly biased branches
chosen the first time the branch is introduced to the BTB, itan be predicted with high accuracy with just one bit. The
is not bound to stay that way while the branch is in thdiltering of such branches out of the PHT is done by a bias
BTB and as a result pollute the direction PHTSs. bit and a saturating counter (figure 5) for each BTB entry.
However, the choice PHT takes a third of all PHTWhen a branch is introduced to the BTB the bias bit is set

. . . . to the direction of the branch when it is resolved and the
resources just to dynamically determine the bias. It alsQ A))
ounter is initialized. When every branch instance is

does not sqlve the aliasing proplem between mstgnces 0frcc"élsolved, if the direction of the branch is the same as the
branch which do not agree with the bias and mstancegias bit the counter is incremented. If not, the counter is
which do. : _ ' o)
zeroed and the bias bit is toggled. A branch is predicted
The Skewed Branch Predictor. The skewed branch using the PHT if the counter is not saturated. If the counter
predictor (figure 4) is based on the observation that moss saturated, it means that the branch is highly biased in the
aliasing occurs not because the size of the PHT is todirection indicated by the bias bit, and therefore the bias bit
small, but because of a lack of associativity in the PHT (thés used as a prediction. In this case, when the counter is
major contributor to aliasing is conflict aliasing and notsaturated, the PHT is not updated with the branch outcome

capacity aliasing). The best way to deal with conflict

— the saturated counter filters this information from the“not taken” cache is accessed to check if it is a special case
PHT. where the prediction does not agree with the bias. If there

The size of the counter has to be tuned to the size of th'% amiss in the “not taken” cache, the choice PHT is used

PHT. If the PHT size is large, the amount of filtering as a prediction. If there is a hit in the “not taken” cache it

. . supplies the prediction. A similar set of actions is taken if
needed is small, and therefore the size of the counte . -~ . .y L
e choice PHT indicates “not taken,” but this time the
should be large.

check is done in the “taken” cache. The choice PHT is
When a branch is first introduced in the BTB, the counteaddressed and updated as in the bi-mode choice PHT. The
is initialized. It was found that it is best to initialize the “not taken” cache is updated if a prediction from it was
counter to its maximum value so the filtering mechanisnused. It is also updated if the choice PHT is indicating
will start working immediately. If the branch is not highly “taken” and the branch outcome was “not taken.” The
biased, the bias bit will flip fairly quickly and the counter same happens with the “taken” cache.

will be zeroed. On the other hand, if the counter isW
initialized to zero and the branch is highly biased, it will
take time for the filtering mechanism to start working and
the PHT will be polluted in the meantime.

e still need to take care of aliasing for instances of a
branch which do not agree with the branch’s bias. After
making the introduction of tags cost-effective, the natural
solution for the aliasing problem is to add associativity (in
The filter mechanism tries to eliminate all aliasing[6] it was showed that the vast majority of aliasing in the
instances, neutral and destructive, by considerablfPHT is conflict aliasing).

reducing the amount of information stored in the PHT : N . .
: . : : . . When making the direction caches set-associative, there is

However, it mispredicts instances of highly biased . :
.) . some extra cost for keeping a correct replacement policy.
branches which do not comply with the bias. . L :
For example, in a two-way set-associative cache, one bit

for every two entries will suffice to keep track of which
3. YAGS entry was replaced last. We use an LRU replacement

The brief overview above, of earlier proposals to reduc®0licy with one ‘(‘exception:" an entry in the “taken” cache
aliasing in global schemes, suggests that splitting the PH¥¥hich indicates “not taken” will be r(_aplaced“ first to avoid
into two branch streams corresponding to biases of “takerfedundant information. If an entry in the “taken” cache

and “not taken,” as is done in the agree and bi-mogdhdicates “not taken,” this information is already in the
predictors, is a good idea. However, as in the skeweghoice PHT and therefore is redundant and can be

branch predictor, we do not want to neglect aliasing€Placed.

between biased branches and their instances which do not

comply with the bias. Finally, it will be beneficial if we can 4. Performance Studies
reduce the amount of unnecessary information in the PHT,

as in the filter mechanism, but not at the expense of.1 Methodology

mispredicting some of the branch instances. The experimental data presented in this paper were

The motivation behind YAGS is the observation that forcollected using SPEC95 benchmark traces. The
each branch we need to store its bias and the instanceenchmarks were compiled on the SunOS operating system
when it does not agree with it (figure 6). If we employ ausing the gcc compiler. The traces were run to completion.
bimodal predictor to store the bias, as the choice predictdn order to simulate a context switch for the context switch
does in the bi-mode scheme, than all we need to store study only, a new trace file was created by interleaving all
the direction PHTSs are the instances when the branch doegyght SPEC95 benchmarks every 60,000 instructions until
not comply with its bias. This reduces the amount ofbne of the files runs out of instructions The number was
information stored in the direction PHTs, and therefore thehosen not to reflect a real context switching interval,
direction PHTs can be smaller than the choice PHT. Tavhich would be much less frequent, but to emphasize the
identify those instances in the direction PHTs we add smadiffect of context switching on the various predictors. The
tags (6-8 bits) to each entry, referring to them now asize of the YAGS predictors includes the tags of the
direction caches. These tags store the least significant bifrection caches. In the case where YAGS is set-
of the branch address and they virtually eliminate aliasingssociative the LRU and history bits are also added.
between two consecutive branches.

When a branch occurs in the instruction stream, the choice
PHT is accessed. If the choice PHT indicated “taken,” the

4.2 Results

Figure 7 shows the misprediction rate for gshare, th

0.95 - o
prediction
090 4 rate
rediction
096 4 P 0.85 -
0.94 - 0.80 -
0.75 -
0.92 yags6 00 yags6
. .70
0.90 | —a—bimode —o—bimode
—8—skew 0.65 - —&—gshare
0.88 —o—gshare 0.60 ‘ ‘ ‘
0.86 ‘ ‘ ‘ 0.1 1 10 100
0.1 1 10 100 predictor size in K-bytes
predictor size in K-bytes
Figure 8. Predicting GO.
Figure 7. Prediction rates for four schemes
includin g YAGS6 (6 bits in the ta gs).
skewed predictor, the bi-mode predictor and YAGS with
direct mapped direction caches. As can be seen, YAGS
performs better than the other schemes, particularly for 1.00
small sizes. However, as the size of the PHT increases 0.95 -
YAGS’s advantage over the other schemes decreases. Th | , .90 -
is to be expected, because, the aliasing problem in the PH' | © 085 -
decreases with size and therefore the performance of allth | £ —a—Yyags6
schemes converges. B 0.80 - bimode
. o B 0.75
One of the pitfalls of the SPEC95 benchmark suite is that g ; —5—gshare
most traces have a small static branch signature [8]. Fo 0.70 1
example, the compress benchmark has only 482 static 0.65
branches. These branches are executed over and over age 0.60 ‘ ‘ ‘
throughout the course of the program. However, the small 0.1 1 10 100

static branch signature implies each branch is more likely
to have a unique entry in the PHT for each history instance,
resulting in a very small amount of aliasing in the PHT.

This yields optimistic figures for many branch predictions

schemes.

The gcc and go benchmarks are thus of special interest

predictor size in K-bytes

Figure 9. Predicting GCC.

because of their large static and dynamic branch signaturegg get Associativity in the Direction Caches

As can be seen in figures 8 and 9, YAGS also outperforms

the other schemes for the go and gcc benchmarks. The ¥¥hen increasing the size of the PHT, we increase the size
benchmark is particularly interesting because it suffers thef the history register to better exploit correlation between

most from destructive aliasing. The gshare scheme fdiranches. However, if the direction caches are made two
small predictors achieves a 69% correct prediction rate fof/ay set-associative, not all the bits in the history register

go. For about the same amount of resources (0.5KB3r€ used to index into the direction caches. In fact, one less
YAGS achieves a 77% correct prediction rate. The bibit is used than if the direction caches were direct-mapped.

mode, which is designed to reduce destructive aliasingihis loss of correlation has a negative effect on the
prediction rate. In the present YAGS scheme, the amount

achieves only 73% correct prediction rate.

of remaining aliasing is so little that the advantage gaineg@resence of a context switch [9]. This is due to a short
by making the direction PHT set-associative is offset byarm up time of the bimodal component. Each branch is
the loss of correlation. In order to maintain the same levahapped to only one entry in the PHT of the bimodal
of correlation, one bit of history is used as a tag in additioscheme. Therefore, it takes only few executions of a branch
to the usual tag. for its respective entry to reflect the information stored the
Figure 10 shows the prediction rate of a 6 bit tag YAGS Vslgranch. On the other ha_nd, the gshare_ schgme has to
éxecute a branch several times for each history instance for

it to warm up. The potentially large number of history
instances (i.e., MY 1engty Wil result in a very long

0.96 - prediction warm-up time and that in turn will cause a degradation in
performance in the presence of context switches. The same

0.95 4 rae . . :
: phenomenon is observed in the skewed predictor.

0.94 - However, one would expect the bi-mode predictor and

0.93 - —o—yags6-2way YAGS to be more tolerant of context switches. Most of the

information in the “not taken” direction PHT of the bi-

0.92 1 a0s6 mode predictor is “not taken.” Once the choice PHT points
0.91 - yag to the “not taken” direction PHT the probability of a
0.90 “taken” prediction is very small. Thus only a few

executions of each branch are needed to warm up the
0.1 1 10 100 choice PHT (it is essentially the bimodal predictor). After
that, it will take more executions to warm up the branch’s
history instances which do not comply with the branch
bias. But for the most part, the predictor will perform as
Figure 10. 6 bit ta gs vs. 2-way set associative. well as the bimodal. The same phenomenon occurs in

YAGS. This time it is due to the tags. There is a low

probability that the tags will match after a context switch.

Therefore, until some tags match, the choice PHT (which
in fact, the bimodal) will serve as the predictor.

predictor size in K-bytes

the same predictor with a 2 way set associative cache. Trl%
extra bits that are used by the two way set-associative ahe a sense, YAGS and the bi-mode predictors are hybrid
the LRU bits and the extra tag bit which is taken from thepredictors which combine the gshare scheme with the
history register. As expected, the two way set-associativeimple bimodal predictor. In the presence of a context
version is able to reduce the aliasing in the directiorswitch, they should exhibit the short warm up time of the
caches. The small difference between the schemes is dognodal predictor. (Similar behavior is seen in the agree
to lack of aliasing in the direction caches. predictor.)

Figure 11 shows the performance of the schemes tested in
the presence of context switches. As expected, YAGS and
Future high-performance microprocessors will use largethe bi-mode predictor perform much better than gshare and
branch prediction schemes — a trend that is very likely téhe skew predictor because of their short warm-up times.
continue in the near future. Ideally, the prediction rateThe differences between the performance of the different
should improve in proportion to the amount of hardwaremethods is much more pronounced in the presence of
put into the scheme. However, a pitfall of large predictorsontext switches. The gshare scheme would converge with
is the time it takes them to reach peak performance fromthe others only if the PHT were large enough to
cold start. In the presence of intensive context switchinggccommodate most of the branch instances from all the
the warm-up time of the branch prediction scheme ca®PEC95 benchmarks. Without context switches, the
have a significant influence on the misprediction rateschemes would converge if the gshare PHT were big
Furthermore, some complex schemes might end upnough to accommodate the benchmark with the largest
achieving less accurate predictions than a less sophisticatbthnch signature.

sche_me, du_e to ang warm-up t_|mes. It was shown that Phe gshare scheme does not perform as well as the others.
hybrid predictor (first proposed in [1]) composed of gSharerhis is because of its long warm-up time, as discussed

and the bimodal predictor has good performance in the
above.

4.4 Context Switching

Figure 11. Predictin ginthe presence
of context switches.

The difference between the performance of YAGS and th~*

0.944 - prediction

0.95 - prediction 0943 | rate
0.94 | rate 0.942 -
0.93 7 0.941 -
0.92 - —%—Yyags6

bi 0.940 -
0.91 1 —a— bimode
0.90 - 5 skew 0.939 -
0.89 - —o—gshare 0.938 -
0.88 ‘ ‘ ‘ 0.937 ‘ : ‘

0.1 1 10 100 0 5 10 15
. . tag size in bits
predictor size in K-bytes

Figure 12. Tag sizes for SPEC95.

of the bi-mode scheme is very small. Only for very smal -
predictor size is the difference significant. It might be tha 0.9098 - prediction
YAGS would do better in the presence of a context switc 0.9096 - rate
if a larger tag size were used. 0.9094 -
4.5 Design Space 0.9092 1
0.9090 -
The YAGS version shown so far has a 6 bit tag and tt
direction caches are each half the size of the choice P 0.9088 -
This is somewhat arbitrary. How big do the tags need to [0.9086 -
to identify the branch in most cases? Figure 12 shows tl 0.9084 -
prediction rate as a function of the tag size for SPEC9! 0.9082 | | |
The size of the choice PHT is 0.25KB (1024 entries), eac '
direction cache has 512 entries and its size varies accord 0 S 10 15
to the size of the tag. According to figure 12, there is n tag size in bits

reason to increase the size of the tag beyond 8 bits
prediction improvement is almost zero. There may be no
reason to increase the size of the tag from 6 to 8 bits since
the prediction improvement is very small and may not

justify the increase in the predictor size. Figure 13 showgoes not result in better predictions (figure 14). On the
the prediction rate as a function of tag size for the g@ther hand, it does improve the prediction rate for the go
benchmark only. The difference between the predictiomenchmark (figure 15). The prediction rate improvement is
rate for a 6 bit tag and 8 bit tag is more noticeable for theninimal and almost negligible. Even increasing the size of
go benchmark than for SPEC95 in general. As mentioneghe tag to 32 bits does not result in a better prediction rate,

before, the go benchmark has a large branch signature apdt it increases the size of the predictor considerably.
can benefit from an increase in tag size.

Figure 13. Tag sizes for GO.

By reducing the amount of unnecessary information stored
Figures 14 and 15 shown the prediction rate vs. predictah the direction caches, we are able to reduce the number of
size for the SPEC95 and go benchmark respectively. Ogntries in the direction caches and to make the introduction
average for SPEC95, increasing the tag from 6 bits to 8 bitsf tags cost-effective. Figure 16 gives some insight as to

0.96 - prediction 0.96 , Prediction
rate 0.95 | rate
0.95 - 0.9
0.94 1 0.93 | ——0.5
0.93 - —o—yags8 0.92 1 ——0.25
0.92 - 0.91 -
——Yyags6
0.91 - 0.90 - ——0.125
0.90 - 0.89 \ ‘ ‘
0.89 ‘ ‘ ‘ 0.1 1 10 100
01 1 10 100 predictor size in K-bytes
predictor size in K-bytes

Figure 16. Direction cache size.

Figure 14. Predictor size for SPEC95. bimodal predictor. When the amount of resources
increases, there is much less aliasing in the choice PHT and
resources can be freed to handle the cases where a branch
does not agree with its bias (i.e. larger direction caches).
Thus the size of the direction caches should be tuned
according to the overall size of the predictor.

0.90 - prediction

rate 5. Summary
0.85 We introduced YAGS, a two level global branch prediction
scheme which tries to eliminate aliasing in the PHT by
0.80 - combining the advantages of previous schemes. YAGS
O—yags8 performs as well as all other schemes tested. In many cases
0.75 - —o—Yyags6 it was considerably better. YAGS and the bi-mode
predictors perform well in context switches.
0.70 ‘ ‘ ‘ . . .
01 1 10 100 Some work was done to investigate the design space.

Increasing the size of the tags only improves performance
predictor size in K-bytes up to a point. After that, increasing the tag size will
degrade performance, and the marginally better prediction
.]] rate does not justify the resources taken up by the larger
Figure 15. Predictor size for GO. tag. We have found that the size of the direction caches
should be tuned to the size of the predictor.

how small the direction caches can be with respect to t _ . .
choice PHT. Figure 16 shows the prediction rate Vr_%le believe the potential of YAGS is greater than what we

were able to demonstrate in this paper. In all experiments

predictor size for three versions of YAGS. The direction . . .)
caches in the first version are each half the size of th onducted for this paper, the size of the history register was
jctated by the amount of resources allocated for the

choice PHT. In the second version, they are one quarter t ; _
! vers! y au redictor. For example, in a 1KB gshare, there are 4KB

size of the choice PHT, and in the third are one eighth of i d therefore the size the hist st ; d
the size. All versions use a six bit tag entries and therefore the size the history register was force

to be 12 bits. The closest bi-mode predictor in size which
Figure 16 shows that for small predictor sizes the 0.12%vas tested is a 0.75KB predictor, from which only 0.25KB

version is best, while for large predictor sizes, the 0.§1K entries) were dedicated to each direction PHT. This
version is best. For small predictor sizes, most of théorced this instance of the bi-mode predictor to use only a
resources should be allocated to the choice PHT, ensurin@ bit history register. As a result, the bi-mode although
that the predictor will predict at least as well as a simpleeducing the aliasing in the PHT, has reduced correlation

information for use in the prediction, compared to a similaif4]

sized gshare. This phenomena holds true for the YAGS
predictor as well, since the size of the direction caches is

reduced even further than in the bi-mode predictor and as[8]

result the size the history register (and therefore the
correlation information) was reduced. An example is the
1.25KB YAGS where 0.25KB are dedicated to the choice

PHT. Each direction cache takes 0.5KB and has 64 entriel§]

i.e., the history register is only 6 bits.

In figure 16, whenever the size of the direction caches w. =
decreased by half, the size of the history register was
decreased by one bit and therefore correlation information
was lost. A better experiment would decrease the relative
size of the direction caches while adding history bits a

tags. Making the direction caches 2 way set associative

hardly improved the prediction. This led us to believe thafg]

the aliasing problem in the direction PHT was almost
completely solved. Therefore, decreasing the size of the

direction caches degraded the performance because of the

S. Sechrest, C.-C. Lee, and T. Mudge. Correlation and
Aliasing in Dynamic Branch PredictorBroc. 23rd Ann. Int.
Symp. on Computer Architectuiday 1996.

C. Young, N. Gloy, B. Chen, and M. Smith. An Analysis of
Dynamic Branch Prediction Schemes on System Workloads.
Proc. 23rd Ann. Int. Symp. on Computer Architeciuviay
1996.

P. Michaud, A. Seznec, and R. Uhlig. Trading Conflict and
Capacity Aliasing in Conditional Branch PredictoPsoc.
24th Ann. Int. Symp. on Computer Architectiviay 1997.

E. Sprangle, R. Chappell, M. Alsup, and Y. Patt, The Agree
Predictor: A Mechanism for Reducing Negative Branch
History Interference.Proc. 24th Ann. Int. Symp. on
Computer ArchitectureMay 1997.

C.-C. Lee, |.-C. Chen, and T. Mudge. The Bi-Mode Branch
Predictor.Proc. MICRO 30Dec. 1997.

P.-Y. Chang, M. Evers, and Y. Patt. Improving Branch
Prediction Accuracy by Reducing Pattern History Table
InterferenceProc. Int. Conf. on Parallel Architectures and

Compilation Technique®ct. 1996.

reduction in correlation information, and not necessarily1; T.y. veh and Y. Patt. Two-level Adaptive Branch

because of increased aliasing.

We hypothesize that an improved YAGS would have much

Prediction. Proc 24th ACM/IEEE
Microarchitecture Nov. 1991.

Int. Symp. on

smaller direction caches with more history bits in the tag§l1] T--Y. Yeh and Y. Patt. A Comparison of Dynamic Branch

to preserve or increase the correlation information for use
in prediction. Of course history bits can be tagged in every
predictor scheme but the overhead in YAGS would be
significantly smaller than all the other schemes.

Finally, the basic idea behind YAGS could be combined
with other of the schemes, particularly the filter
mechanism. An enhancement that might be tried is add a
small cache to capture the instances filtered out of the PHT
which do not agree with the bias bit.

Acknowledgments This work was supported in part by
DAPRA contract DABT63-97-C-0047. The authors would
also like to thank Elly Z. Winner and C.-C. Lee for their
help.

References

[1] S. McFarling. Combining Branch Predictors.
Technical Report TN-36, Digital Western Research
Laboratory, June 1993.

[2] A. Talcott, M. Nemirovsky, and R. Wodd. The Influence of
Branch Prediction Table Interference on Branch Prediction
Scheme Performanc®@roc. 3rd Ann. Int. Conf. on Parallel
Architectures and Compilation Techniqu&895.

[3] C. Young, N. Gloy, and M. Smith. A comparative Analysis
of Schemes for Correlated Branch Predicti®noc. 22nd
Ann. Int. Symp. on Computer Architectufane 1995

Predictors that us Two Level of Branch HistoRyoc. 20th
Ann. Int. Symp. on Computer Architectuvay 1993.

	1. Introduction
	2. Previous Work
	3. YAGS
	4. Performance Studies
	4.1 Methodology
	4.2 Results
	4.3 Set Associativity in the Direction Caches
	4.4 Context Switching
	4.5 Design Space

	5. Summary
	[1] S. McFarling. Combining Branch Predictors. Technical Report TN-36, Digital Western Research L...
	[2] A. Talcott, M. Nemirovsky, and R. Wodd. The Influence of Branch Prediction Table Interference...
	[3] C. Young, N. Gloy, and M. Smith. A comparative Analysis of Schemes for Correlated Branch Pred...
	[4] S. Sechrest, C.-C. Lee, and T. Mudge. Correlation and Aliasing in Dynamic Branch Predictors. ...
	[5] C. Young, N. Gloy, B. Chen, and M. Smith. An Analysis of Dynamic Branch Prediction Schemes on...
	[6] P. Michaud, A. Seznec, and R. Uhlig. Trading Conflict and Capacity Aliasing in Conditional Br...
	[7] E. Sprangle, R. Chappell, M. Alsup, and Y. Patt, The Agree Predictor: A Mechanism for Reducin...
	[8] C.-C. Lee, I.-C. Chen, and T. Mudge. The Bi-Mode Branch Predictor. Proc. MICRO 30, Dec. 1997.
	[9] P.-Y. Chang, M. Evers, and Y. Patt. Improving Branch Prediction Accuracy by Reducing Pattern ...
	[10] T.-Y. Yeh and Y. Patt. Two-level Adaptive Branch Prediction. Proc 24th ACM/IEEE Int. Symp. o...
	[11] T.-Y. Yeh and Y. Patt. A Comparison of Dynamic Branch Predictors that us Two Level of Branch...

	The YAGS Branch Prediction Scheme
	A. N. Eden and T. Mudge, {ane, tnm}@eecs.umich.edu
	Dept. EECS, University of Michigan, Ann Arbor

